361 research outputs found

    Platform Rules: Multi-Sided Platforms as Regulators

    Get PDF
    This paper provides a basic conceptual framework for interpreting non-price instruments used by multi-sided platforms (MSPs) by analogizing MSPs as "private regulators" who regulate access to and interactions around the platform. We present evidence on Facebook, TopCoder, Roppongi Hills and Harvard Business School to document the "regulatory" role played by MSPs. We find MSPs use nuanced combinations of legal, technological, informational and other instruments (including price-setting) to implement desired outcomes. Non-price instruments were very much at the core of MSP strategies.Platforms, regulation, network effects, distributed innovation

    “Open” disclosure of innovations, incentives and follow-on reuse: Theory on processes of cumulative innovation and a field experiment in computational biology

    Get PDF
    AbstractMost of society's innovation systems – academic science, the patent system, open source, etc. – are “open” in the sense that they are designed to facilitate knowledge disclosure among innovators. An essential difference across innovation systems is whether disclosure is of intermediate progress and solutions or of completed innovations. We theorize and present experimental evidence linking intermediate versus final disclosure to an ‘incentives-versus-reuse’ tradeoff and to a transformation of the innovation search process. We find intermediate disclosure has the advantage of efficiently steering development towards improving existing solution approaches, but also has the effect of limiting experimentation and narrowing technological search. We discuss the comparative advantages of intermediate versus final disclosure policies in fostering innovation

    Development of magnetostrictive active members for control of space structures

    Get PDF
    The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed

    Reporting guidelines for experimental research: A report from the experimental research section standards committee.

    Get PDF
    The standards committee of the Experimental Research section was charged with preparing a set of reporting guidelines for experimental research in political science. The committee defined its task as compiling a set of guidelines sufficient to enable the reader or reviewer to follow what the researcher had done and to assess the validity of the conclusions the researcher had drawn. Although the guidelines do request the reporting of some basic statistics, they do not attempt to weigh in on statistical controversies. Rather, they aim for something more modest but nevertheless crucial: to ensure that scholars clearly describe what it is they did at each step in their research and clearly report what their data show. In this paper, we discuss the rationale for reporting guidelines and the process used to formulate the specific guidelines we endorse. The guidelines themselves are included in Appendix 1

    Design of small molecule-responsive microRNAs based on structural requirements for Drosha processing

    Get PDF
    MicroRNAs (miRNAs) are prevalent regulatory RNAs that mediate gene silencing and play key roles in diverse cellular processes. While synthetic RNA-based regulatory systems that integrate regulatory and sensing functions have been demonstrated, the lack of detail on miRNA structure–function relationships has limited the development of integrated control systems based on miRNA silencing. Using an elucidated relationship between Drosha processing and the single-stranded nature of the miRNA basal segments, we developed a strategy for designing ligand-responsive miRNAs. We demonstrate that ligand binding to an aptamer integrated into the miRNA basal segments inhibits Drosha processing, resulting in titratable control over gene silencing. The generality of this control strategy was shown for three aptamer–small molecule ligand pairs. The platform can be extended to the design of synthetic miRNAs clusters, cis-acting miRNAs and self-targeting miRNAs that act both in cis and trans, enabling fine-tuning of the regulatory strength and dynamics. The ability of our ligand-responsive miRNA platform to respond to user-defined inputs, undergo regulatory performance tuning and display scalable combinatorial control schemes will help advance applications in biological research and applied medicine

    Multispecific Antibody Development Platform Based on Human Heavy Chain Antibodies

    Get PDF
    Heavy chain-only antibodies (HCAbs) do not associate with light chains and their VH regions are functional as single domains, forming the smallest active antibody fragment. These VH regions are ideal building blocks for a variety of antibody-based biologics because they tolerate fusion to other molecules and may also be attached in series to construct multispecific antibodies without the need for protein engineering to ensure proper heavy and light chain pairing. Production of human HCAbs has been impeded by the fact that natural human VH regions require light chain association and display poor biophysical characteristics when expressed in the absence of light chains. Here, we present an innovative platform for the rapid development of diverse sets of human HCAbs that have been selected in vivo. Our unique approach combines antibody repertoire analysis with immunization of transgenic rats, called UniRats, that produce chimeric HCAbs with fully human VH domains in response to an antigen challenge. UniRats express HCAbs from large transgenic loci representing the entire productive human heavy chain V(D)J repertoire, mount robust immune responses to a wide array of antigens, exhibit diverse V gene usage and generate large panels of stable, high affinity, antigen-specific molecules

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    Get PDF
    The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of s=1.96\sqrt s =1.96 TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is AFBttˉ=0.128±0.025A_{\mathrm{FB}}^{t\bar{t}} = 0.128 \pm 0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore